If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7w^2+34w-5=0
a = 7; b = 34; c = -5;
Δ = b2-4ac
Δ = 342-4·7·(-5)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-36}{2*7}=\frac{-70}{14} =-5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+36}{2*7}=\frac{2}{14} =1/7 $
| 6x-3=2+13 | | 4m-4-4m3=20 | | 3÷5x-1÷5x=3 | | (x+4)^2=10 | | 26j^2-15j=0 | | 4(5x+2)=68 | | g^2-12g+11=0 | | 9^x+1=27^x-4 | | 36x^2+12-1=0 | | 2g^2-27g+13=0 | | 8n^2-2n+10=0 | | 5.0Lx740=x | | 35=-5a-15 | | 4j^2+31j-8=0 | | 5/8(8+c)=-20 | | 2w-13w=-22 | | 3(4g+2)-4(8-g)-10g=3(g+10)-(g+6) | | 0.3(x+2)=x+2 | | 1/8s=8 | | X^3+3x^2-16x-43=0 | | (x^2+8)-6(9+x)=54 | | 1/8s=4 | | 5^2x+1=125 | | 2x^2-18x-4/4x=7 | | 2(x-7)^2=98 | | (x^2+8)-6(9+×)=-54 | | n^2+32n=0 | | 0.8+w=5 | | Y2+3y-1=0 | | 2(x/7)^2=98 | | 1x+87=2x+93 | | (y^2+6)-7(8+y)=-62 |